Elsevier

Journal of Biomechanics

Volume 49, Issue 7, 3 May 2016, Pages 1058-1063
Journal of Biomechanics

Sensory enhancing insoles improve athletic performance during a hexagonal agility task

https://doi.org/10.1016/j.jbiomech.2016.02.022Get rights and content
Under a Creative Commons license
open access

Abstract

Athletes incorporate afferent signals from the mechanoreceptors of their plantar feet to provide information about posture, stability, and joint position. Sub-threshold stochastic resonance (SR) sensory enhancing insoles have been shown to improve balance and proprioception in young and elderly participant populations. Balance and proprioception are correlated with improved athletic performance, such as agility. Agility is defined as the ability to quickly change direction. An athlete’s agility is commonly evaluated during athletic performance testing to assess their ability to participate in a competitive sporting event. Therefore, the purpose of this study was to examine the effects of SR insoles during a hexagonal agility task routinely used by coaches and sports scientists. Twenty recreational athletes were recruited to participate in this study. Each athlete was asked to perform a set of hexagonal agility trials while SR stimulation was either on or off. Vicon motion capture was used to measure feet position during six successful trials for each stimulation condition. Stimulation condition was randomized in a pairwise fashion. The study outcome measures were the task completion time and the positional accuracy of footfalls. Pairwise comparisons revealed a 0.12 s decrease in task completion time (p=0.02) with no change in hopping accuracy (p=0.99) when SR stimulation was on. This is the first study to show athletic performance benefits while wearing proprioception and balance improving equipment on healthy participants. With further development, a self-contained sensory enhancing insole device could be used by recreational and professional athletes to improve movements that require rapid changes in direction.

Keywords

Stochastic Resonance
Somatosensory System
Proprioception
Sport
Equipment
Hopping
Sensation

Cited by (0)